top of page


DCART Exhibition 2023


Laser cut and engraved plywood, acrylic paint, cardstock

33”x 24”x 2.5”

Claire Honda * Gabrielle Von



Neurotropolis Logotype_Page_4.jpg
Art Statement

Art Statement

Language connects us all. Whether spoken, signed, written, or read as Braille, it is our primary means of communication. In the brain, language is processed in a variety of areas that send information between each other, forming complex and interconnected networks that adapt based on experience. Our goal is to demonstrate the brain’s flexibility and the diversity of neural pathways that linguistic information can take, while encouraging human connection. To this end, we have created Neurotropolis, a playable art piece in the form of a board game. Designed based on actual maps of the brain but stylized to look like a city landscape, the modular 3D game board contains various locations (brain areas) to be connected. Each player’s goal is to build connections while adapting their navigation based on cards that affect gameplay in unpredictable ways. The piece aims to educate, inspire, and connect people in a playful and enjoyable way. 


La langue nous unit tous. Qu'elle soit parlée, signée, écrite ou lue en braille, elle est notre principal moyen de communication. Dans le cerveau, le langage est traité dans une variété de régions qui envoient des informations entre elles, formant des réseaux complexes et interconnectés qui s'adaptent en fonction de l'expérience de chacun. Notre objectif est de démontrer la capacité d'adaptation du cerveau et la diversité des voies neurales que l'information linguistique peut emprunter, tout en encourageant la connexion humaine. À cette fin, nous avons créé Neurotropolis, une œuvre d'art ludique sous la forme d'un jeu de société. Conçu à partir de la cartographie cérébrale réelle, mais stylisé pour ressembler à un paysage urbain, le tableau de jeu en trois dimensions contient divers sites (zones cérébrales) à relier entre eux. L'objectif de chaque joueur est d'établir des connexions tout en adaptant sa navigation en fonction de cartes qui affectent le jeu de manière imprévisible. L'œuvre vise à éduquer, inspirer et connecter les gens d'une manière ludique et agréable.




Claire Honda

Claire Honda is a PhD candidate in neuroscience at McGill. Her work involves examining brainwaves and using neurostimulation to study differences in how adults process and learn languages. Ultimately, she aims to make language learning a more accessible and enjoyable experience for everyone. Besides being curious about language learning and the brain, she plays the violin and is an avid tap dancer who has traveled to tap festivals and events around the world. She is passionate about bringing together scientific and artistic endeavours, and about promoting connection between people with diverse backgrounds and perspectives.


Claire Honda est candidate au doctorat en neurosciences à McGill. Elle examine les ondes cérébrales et utilise la neurostimulation pour étudier les différences dans le traitement et l’apprentissage du langage chez les adultes. Elle cherche à rendre l'apprentissage des langues plus accessible et agréable pour tous. Outre sa curiosité pour les langues et le cerveau, elle joue du violon et adore les claquettes, ayant participé à des festivals et évènements de claquettes à travers le monde. Elle est passionnée par le rapprochement des efforts scientifiques et artistiques, et par la promotion de liens entre des personnes d'horizons et de perspectives divers.


Gabrielle Von

Gabrielle Von is a Montreal-based designer, currently finishing her undergraduate studies in Design at Concordia University. The main focuses of her work are graphic design, illustration, and photography. She is exploring ways to navigate the cultural landscape of the world by using design as a communicative tool to connect with people. Her practice aims to translate the values at the core of a project through methods of storytelling. Her multidisciplinary approach allows each project to dictate the medium that best suits its needs while also using a visual language that can make the project accessible to a larger audience.


Gabrielle Von est une designer qui termine actuellement ses études en design à l'Université Concordia. Elle travaille principalement dans les domaines du graphisme, de l'illustration et de la photographie. Elle explore des façons de naviguer dans le paysage culturel du monde en utilisant le design comme outil de communication pour se connecter avec son entourage. Sa pratique vise à traduire les valeurs au cœur d'un projet par des méthodes de narration. Son approche pluridisciplinaire permet également à chaque projet de dicter la modalité qui répond le mieux à ses besoins tout en utilisant un langage visuel qui peut rendre le projet plus accessible au public général.



Striking evidence for the brain’s ability to adapt comes from research on language-related neural plasticity in response to sensory loss. For example, it is normally assumed that the visual cortex responds primarily to visual
information, and not necessarily to information from other sensory modalities. However, in blind people the primary visual cortex is active during Braille reading (1,2), and inhibiting visual cortex activity impairs Braille reading (3,4). Case studies have also revealed that Braille reading in the blind is impaired when visual cortex is damaged by stroke (5) or when its activity is disrupted during hallucinations (6). Thus, the visual cortex appears to play a key role in reading, whether visually or tactilely.


The visual cortex of blind people plays a role not only in Braille reading but also in verbal language processing. When blind people listen to spoken language, their visual cortex becomes active (7-9), thanks to corticocortical connections between primary auditory cortex and primary visual cortex (10). Relatedly, when blind people have the activity of their visual cortex inhibited with TMS, their high-level verbal processing (ability to think of a related verb in response to a noun) is impaired (11). The principle of language-related plasticity across sensory modalities is also evident in the case of deafness. Seeing sign language leads to the activation of secondary auditory cortex and auditory association areas, which are traditionally activated by spoken speech (12-14).

Essentially, these studies all point to the idea that the brain shows an impressive ability to adapt to its experience. If a particular area of the brain is not receiving its “usual” input (e.g., no visual information going to visual cortex in the case of congenital blindness), then reorganization will occur such that the area will process relevant information from other sensory modalities (e.g., touch or sound). This work also points to some universality in neural organization, with certain areas being dedicated to a particular process (e.g., language) regardless of sensory modality. Consequently, the same occipital areas will process a word whether it is seen as ink or felt as raised dots, and the same temporal areas will process a word whether it is heard as speech or seen as sign language.

This work also uncovers biases in how brain areas are categorized and named. The nomenclature of referring to brain areas by the sensory modality that they primarily process, such as visual or auditory cortex, is a logical and simple shortcut—but it is also limiting and misleading. For instance, visual cortex clearly does not only process visual information, as outlined above; the brain is more complex and plastic than terminology would suggest, and its parts are constantly adapting and interacting as a whole in order to support processes like communication.




1. Goldin-Meadow & Feldman. (1977). The development of language-like communication without a language
model. Science, 197(4301), 401-403.

2. Senghas & Coppola. (2001). Children creating language: How Nicaraguan Sign Language acquired a
spatial grammar. Psychological science, 12(4), 323-328.

3. Hamilton & Pascual-Leone. (1998). Cortical plasticity associated with Braille learning. Trends in cognitive
sciences, 2(5), 168-174.

4. Sadato. (2005). How the blind “see” Braille: lessons from functional magnetic resonance imaging. The
Neuroscientist, 11(6), 577-582.

5. Hamilton et al. (2000). Alexia for Braille following bilateral occipital stroke in an early blind woman.
Neuroreport, 11(2), 237-240.

6. Maeda et al. (2003). Braille alexia during visual hallucination in a blind man with selective calcarine
atrophy. Psychiatry and clinical neurosciences, 57(2), 227-229.

7. Cohen et al. (1997). Functional relevance of cross-modal plasticity in blind humans. Nature, 389(6647),

8. Kupers et al. (2007). rTMS of the occipital cortex abolishes Braille reading and repetition priming in
blind subjects. Neurology, 68(9), 691-693.\

9. Bola et al. (2017). Structural reorganization of the early visual cortex following Braille training in sighted
adults. Scientific reports, 7(1), 1-12.

10. Bedny et al. (2015). “Visual” cortex responds to spoken language in blind children. Journal of Neuroscience,
35(33), 11674-11681.

11. Burton et al. (2002). Adaptive changes in early and late blind: a FMRI study of verb generation to heard
nouns. Journal of neurophysiology.

12. Röder et al. (2002). Speech processing activates visual cortex in congenitally blind humans. European
Journal of Neuroscience, 16(5), 930-936.

bottom of page